

GEO-SEQ: Three Years of Progress 2000 - 2003

Sally M. Benson and Larry Myer
Co-Directors, GEO-SEQ Project
Lawrence Berkeley National Laboratory
Berkeley, California 94720
smbenson@lbl.gov

NETL 2nd Carbon Sequestration Conference Alexandria, Virginia May 6, 2003

GEO-SEQ: A Public-Private Partnership

- Funded by DOE Fossil Energy
- Three DOE National Laboratories
 - Lawrence Berkeley National Laboratory
 - —Oak Ridge National Laboratory
 - —Lawrence Livermore National Laboratory
- Three research organizations
 - —Stanford University
 - —Texas Bureau of Economic Geology
 - —Alberta Research Council
- Four industry partners
 - —ChevronTexaco, BP-Amoco, Encana, Statoil

Five Coordinated and Interrelated Applied Research Tasks

Increasing CO₂ Storage Efficiency in Oil Reservoirs

Lynn Orr and Tony Kvoseck

- Stanford University
- Methods to Co-Optimize EOR and Sequestration
- Selection criteria
- Streamline compositional simulation
- Production and injection strategy

Influence of heterogeneity and gravity on sweep efficiency

Carbon Sequestration with Enhanced Gas Recovery (CSEGR)

- Curt Oldenburg, Karsten Pruess and Sally Benson, LBNL
- Proof of Concept for CSEGR
 - Properties of CO₂ and CH₄ favor CSEGR
 - Field scale simulations show significant enhanced recovery
 - 5-spot simulations confirm favorable conditions for EGR
 - Economics indicate feasibility

Schematic of CSEGR

Co-Disposal of CO₂, H₂S, NO₂ and SO₂

- Kevin Knauss and Jim Johnson, LLNL
- Co-disposal options
 - Reactive transport simulation capability
 - H₂S has little impact on storage security
 - $-H_2S < NO_2 < SO_2$
 - Ready to partner with capture technology

Comparison of geochemical interactions with and without H₂S

Lost Hills CO₂ Migration Monitoring Pilot Study

Lost Hills CO₂ Flood Pilot Test

- Operated by Chevron
- Diatomite formation
- 1500 2000 ft deep
- 175,000 std ft³/day CO₂ injection

Monitoring

- Cross-well seismic
- Cross-well EM
- Single-well seismic
- Tracer development

Activities

- Pre-injection baseline
- August 2000, injection initiated
- Post-injection: April, May, July

Cross-Well Seismic Imaging
At Lost Hills Oil Field
In the Central Valley, California

Lost Hills CO₂ Monitoring Project

- Mike Hoversten, Ernie Majer, Larry Myer, LBNL
- Monitoring technology demonstration
 - High resolution cross-well seismic and EM imaging
 - Combined seismic and EM interpretation
 - Quantification of CO₂ content
 - Useful for co-optimization and leak detection

High resolution image of injected CO₂ obtained using cross-well seismic and EM imaging

Electrical Resistance Tomography

- Robin Newmark and Abe Ramirez, LLNL
- Proof of concept and field demonstration
 - Useful for CO₂ plume detection
 - Low cost monitoring technology using casings as electrodes
 - Simulations demonstrate adequate sensitivity
 - Field demonstration at Vacuum Field underway

Example of electrical resistance tomography using the casings as electrodes

Resolution and Sensitivity of Geophysical Measurements

- Larry Myer, LBNL
- Establish detection levels for seismic monitoring
 - Methodology developed for sensitivity studies
 - Detection limits sensitive to physical properties and geometry of CO₂ plume
 - Optimization of monitoring approaches
 - Feasibility studies for leak detection

Natural and Introduced Tracers for CO₂ Monitoring

- Dave Cole and Tommy Phelps, ORNL
- Develop tracers for monitoring geologic storage of CO₂
 - Isotopes of C and O for plume
 ID and geochemical
 interactions
 - Perfluorocarbon tracers (PFT) for plume ID and dissolution monitoring
 - Field demonstration at Lost Hills for isotopes
 - Laboratory apparatus for testing PFT's

Laboratory test set-up for evaluating tracers

Pressure Build-up in CO₂ Injection Wells

- Sally Benson, LBNL
- Develop new analytical solution for calculating pressure buildup in CO₂ injection wells
 - Quick and easy calculation for pressure buildup in CO₂ injection wells
 - Calculate safe injection rates
 - Design and interpret well tests
 - Multiphase flow properties and front tracking

Pressure buildup calculations from a new analytical solution for CO₂ injection into brine formations

Intercomparison Studies for Simulation for Geologic Storage of CO₂

Comparison of Numerical Simulators for Gas Storage in Coal Beds

Bill Gunter and David Law

Alberta Research Council 5 simulation codes
6 sample problems
Simple to complex problems
Web-site
Study will be concluded this year

11 Research groups around the world
8 sample problems
2 workshops
Fair to good agreement between codes
Need for accurate thermodynamic data
Web-site and report
Discussion for 2nd round underway

An Intercomparison Study of Simulation Models for Geologic Sequestration Of CO₂

Karsten Pruess and Chin Fu Tsang LBNL

Capacity Assessment Methods

- Christine Doughty, Susan Hovorka and Sally Benson
- Develop reliable methods for estimating storage capacity in brine formations
 - Consider two-phase flow, geometry and heterogeneity
 - Stochastic simulations
 - Define capacity factor
 - New capacity estimates are 5 to 10 times higher that previous estimates

Stochastic realization of the Frio Formation

Frio Brine Formation Pilot Test

- Susan Hovorka and the GEO-SEQ Team
- Demonstrate safe injection of CO₂ and monitoring technology
 - Small-scale test (5000 tonnes CO₂)
 - Extensive monitoring and verification
 - Begin Fall 2003
 - See next talk by Susan
 Hovorka for more information

Well log showing the injection interval and caprock at the test site

Conclusions

- Significant progress has been made towards all of the overall goals of the GEO-SEQ project
 - Lower the cost of sequestration through co-optimization
 - Decrease risk through better monitoring technology, improved performance assessment models and more reliable capacity assessment
 - Decrease the time to implementation through pilot testing of monitoring technologies and identification of pilot testing opportunities
 - Increase public acceptance by improving the scientific foundations and information
- Frio Formation brine injection pilot beginning this summer
- Future focus for GEO-SEQ: Measurement, Monitoring and Verification